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Abstract 

Missing data are common with large scale assessments (LSAs). A typical approach to handling 

missing data with LSAs is the use of listwise deletion, despite decades of research showing that 

approach can be a suboptimal strategy resulting in biased estimates. In order to help researchers 

account for missing data, we provide a tutorial using R and the freely available Blimp program to 

impute and analyze multiply imputed datasets.  
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Working with Missing Data in Large-scale Assessments 

Participants in (international) large-scale assessments (LSAs)1 do not always respond to 

every survey item resulting in missing data. The clustered nature of the data (e.g., students within 

schools) adds an additional complication that the missing items can be at different levels in the 

dataset as well. Furthermore, the complex sampling designs used (e.g. stratified two-stage cluster 

sampling) necessitate the use of weights in order for results to generalize to the population of 

interest. Although articles have discussed missingness with regard to measurement and plausible 

values used in LSAs (Grund et al., 2021; Weirich et al., 2014), papers that discuss how to handle 

missing data in LSAs are not common.2  

Given that missing data are ubiquitous in LSAs, a de facto (and seemingly accepted) 

approach to handling missing data is the use of listwise deletion (LD) and this can be seen in recent 

applied articles in Large-scale Assessments in Education published in 2024. Articles will generally 

indicate the original sample size and then the reduced sample size. For example: 

- Using data from the International Civic and Citizenship Education Study (ICCS) of the 

International Association for the Evaluation of Educational Achievement (IEA), missing 

data were reported for 18 countries that ranged from 2% to 26% (Beyer & Brese, 2024).  

- In a study of five countries using PISA 2018 data, the author reported that the analytic 

sample consisted of “82%, 78%, 83%, 90%, and 79%” of the original sample because 

they did not “possess the required data for estimating the statistical models” (Rodríguez 

De Luque, 2024, p. 6).  

 
1 Although international LSAs are popular, we use the more inclusive term LSA as the methods described also 
apply to other assessments that are not international in nature.  
2 One study discusses how imputation works using TIMSS data as a case study but focuses only on student-
level data using commercial software (Bouhlila & Sellaouti, 2013). Since then, open-source software such as 
R (R Core Team, 2022) have gained much popularity and other freely available software (that can perform 
multilevel multiple imputation) such as Blimp (Keller & Enders, 2023) have been developed. 
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- Using TIMSS 2019 data, authors wanted to include a group-level socioeconomic status 

(SES) variable but 26% of study participants were missing student-level SES, and 

authors instead opted not to use the aggregated variable (Ye et al., 2024), despite being 

an important predictor (e.g., see Raudenbush & Bryk, 2002; Singer, 1998).  

These are not isolated cases (and other studies do not even mention how they handled 

missing data) but these examples are only meant to show that even in 2024, LD (or complete case 

analysis of CCA) is a common approach to handling missing data. 

If data are missing completely at random (MCAR; i.e., the missingness is not related to any 

other observed or unobserved variable), LD would be an acceptable approach, providing unbiased 

estimates (though with less power to detect effects due to the reduced sample size). However, in 

reality, the MCAR assumption is not likely to be met and often, missingness may be related to some 

other observed variable otherwise referred to as missing at random (MAR; e.g., low performing 

students may be less likely to provide responses).3 Decades of research (Acock, 2005; Enders, 

2010; King et al., 1998) have indicated that LD may not be an optimal strategy for handling missing 

data (e.g., results can be biased) though this continues to be routinely used when analyzing LSAs, 

despite being referred to (together with pairwise deletion) as “among the worst methods available 

for practical applications”  (Wilkinson & Task Force on Statistical Inference, 1999, p. 598). 

However, a commonly accepted approach for handling missing data is the use of multiple 

imputation (MI) (Little & Rubin, 2019; Rubin, 1987; Schafer & Graham, 2002) and MI has been 

extended to work as well with multilevel data (such as LSA datasets). In 2016, research on 

multilevel MI was described as being in its infancy (Enders et al., 2016). More recently, Grund et al. 

(2024) indicated that we “have seen the emergence of new and extremely flexible methods for 

 
3 A third type of missingness is referred to as missing not at random (MNAR) and refers to the situation where 
the value of the missing variable is related to the variable itself. MNAR is also referred to as nonignorable 
missingness and in this situation, the missingness is due to the unobserved value.  
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handling missing data that are especially useful for multilevel data” (p. 289) and today, researchers 

can choose from a growing number of options for handling missing data.  

The current manuscript is a software tutorial that provides applied researchers a means to 

account for missing data using freely available software. We first provide a high-level introduction 

to MI. Several articles (e.g., Acock, 2005; White et al., 2011) and books (Enders, 2010; Rubin, 1987) 

have provided detailed explanations of MI over the years and we describe the general workflow of 

working with imputed datasets. We then provide a tutorial on imputing and analyzing LSA data with 

missing values with free software using R (R Core Team, 2022) together with Blimp (Keller & Enders, 

2023) software. Note that an additional challenge with the use of LSAs is that if ability measures 

(e.g., math, reading scores) are to be used in models (as predictors or outcomes), these are usually 

found in LSA datasets as five to ten plausible values4 which are already a form of imputed data 

(Jewsbury et al., 2024) and will then require a set of imputations per plausible value to handle 

accordingly. In addition, LSA developers routinely prescribe the use of weights in analytic models 

(Fishbein et al., 2021) which suggests that weights should also be used in some manner in the 

imputation process. To promote transparency and replicability, syntax and data are available from 

the first author’s Github repository at https://github.com/flh3.   

Brief Background on Multiple Imputation 

MI involves generating multiple (m) copies of a dataset with imputed values in place of the 

missing values. The imputed, “filled in” values are sampled (typically) from a conditional 

distribution of the missing data given the observed data and values will differ in each of the m 

datasets. With each of the imputed datasets, the analytic model of interest is fit producing m sets 

of results with different regression coefficient estimates with their standard errors. When fitting a 

 
4 The National Assessment for Educational Progress (NAEP) uses 20 plausible values (National Center for 
Education Statistics, n.d.). 

https://github.com/flh3
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regression model, the multiple m results are then combined into one set of results using Rubin’s 

(1987, p. 76) rules where the regression coefficients are averaged across imputations and the 

standard errors are combined to account for variability within and between imputations.  

Any one of the m complete datasets will have filled in variables which will differ from 

imputed dataset to imputed dataset. Random (or stochastic) variability is added to each imputed 

value so “that the data will mimic the uncertainty in relations among variables present in the 

nonmissing values” (Widaman, 2006, p. 52). Using results from only one complete dataset will treat 

the specific imputed values as if they were completely observed (i.e., not missing) and will 

disregard the uncertainty in the fact that any one imputed dataset only contains possible (or 

plausible) values for the missing data. The pooling process accounts for this uncertainty (or error) in 

the imputed values and is reflected in the standard errors.5 

Pooling Estimates and Standard Errors 

 Combining or pooling results from m regression results use Rubin’s (2004) rules to account 

for imputation variability. The pooled point estimates (e.g., the regression coefficient b) is merely 

the average of the coefficients (𝑏̅) from the m analyses. The uncertainty in the coefficients is 

represented in the standard errors and pooling the standard errors requires additional work to 

obtain.   

Based on formulas from Schafer and Olsen (1998, p. 557), the pooled standard errors are 

composed of the within (𝑈𝑏̅̅̅̅ ) and between imputation (𝐵𝑏) variance for each b coefficient. The 

average of the squared standard errors over the m sets of analyses, 𝑈̅𝑏 =
Σ𝑆𝐸𝑏

2

𝑚
, is the within 

 
5 For single-level data, a commonly accepted approach to account for missing data is to use full information 
maximum likelihood (FIML) and has been referred to as implicit imputation as no imputation is actually 
performed (Widaman, 2006). Readers can refer to Enders (2010) for a detailed discussion on its use. 
However, recent studies have warned also against the use of FIML with multilevel data (Grund et al., 2018, pp. 
134–135) as is implemented in software such as Mplus. As indicated as well by Enders (2017, p. 5), “a 
regression analysis with mixtures of categorical and continuous variables is a very simple, yet common, 
scenario where maximum likelihood estimation is not optimal.” 
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imputation variance of a regression coefficient. The variance of the regression coefficients over the 

m sets of analysis is the between imputation variance 𝐵𝑏 =
(𝑏−𝑏̅)2

𝑚−1
. Combining the between and 

within imputation variance is done using 𝑇𝐵 = 𝑈̅𝑏 + (1 +
1

𝑚
)𝐵𝑏 and the pooled standard error is 

𝑆𝐸𝑏 = √𝑇𝑏. If the between group variability is ignored, the standard errors will be underestimated 

(Schafer, 1999). The estimate (𝑏̅) can then be divided by its corresponding standard error that 

results in the t-statistic used when evaluating statistical significance.  

How Many Datasets to Impute?  

As to how many (m) datasets to impute, Grund et al. (2018) indicated that generating 20 

imputations may be sufficient for most applications in which the goal is to estimate model 

parameters but as many as 100 or more imputations can be useful for more elaborate hypotheses. 

The quality of estimates can generally be improved by including variables that can help predict the 

missing variables as well as increasing the number of imputations used (Grund et al., 2018). White 

et al. (2011, p. 387) offer a (rough and not universally accepted) rule of thumb that the number of 

imputations can be based on the percent of incomplete data. For example, if overall, 80% of the 

data are complete, then a minimum of 20 imputed datasets should be generated (i.e., [1 - .80] x 

100). Although decades ago, the suggestion that 5-10 imputations (if the amount of missing data is 

modest) would suffice (e.g., Rubin, 1987; Schafer, 1999), newer studies emphasize that more 

imputations are better, especially if researchers are interested in the efficiency and replicability of 

standard errors (von Hippel, 2018). 

Specifying an Imputation Model with Weights 

In the imputation phase, the researcher must specify an imputation model that is referred 

to as congenial with the substantive (or analytic) model (Meng, 1994). In other words, the 

imputation model should match the analytic model such that all relevant associations among the 

variables are included. An example of this is that if the substantive model is focused on testing 
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interactions, nonlinear terms, and/or random slopes, these features should be included when 

imputing the data and not doing so may result in biased estimates (Enders et al., 2020). Imputation 

approaches that fill in values that do not require a model to be specified may be limited in the types 

of imputations that can be generated or models analyzed (i.e., only random intercept models). 

 A common feature when analyzing LSA data is the use of weights to avoid biased estimates 

(Meinck, 2015; Rabe-Hesketh & Skrondal, 2006). As substantive models involving LSAs use 

weights, a congenial imputation model should account for this in some manner. One approach is to 

include the weight as a covariate in the imputation model (Carpenter et al., 2023, p. 279).6 Other 

approaches are also possible (e.g., using weights to form strata) though in their analysis of different 

approaches using an applied example, differences in results between approaches did not vary as 

much compared to their simulation results (Quartagno et al., 2020). In practice though, when using 

MI with complex datasets, weights are often ignored in the imputation phase for simplicity (De Silva 

et al., 2021). In the succeeding section, we provide a tutorial on how to carry out MI with both 

weights and plausible values (and the Online Appendix provides an imputation example if plausible 

values are not necessary). 

Software Tutorial 

For the applied example, we used the Belgian PISA 2018 student and school datasets. The 

original datasets can be downloaded from https://www.oecd.org/en/data/datasets/pisa-2018-

database.html and the merged, reduced dataset can be downloaded from 

https://github.com/flh3/pubdata/raw/refs/heads/main/miscdata/belgium.rds. The sample consists 

of 8,475 observations from 288 schools (or around 29.4 students per school). The main R packages 

used in this example were: the dplyr (Wickham et al., 2020) and tidyr (Wickham, 2021) packages for 

 
6 This may also necessitate the use of interactions with the weight and the observed variables but this may 
also cause model fitting problems due to the complexity introduced (Carpenter et al., 2023, p. 275). 

https://www.oecd.org/en/data/datasets/pisa-2018-database.html
https://www.oecd.org/en/data/datasets/pisa-2018-database.html
https://github.com/flh3/pubdata/raw/refs/heads/main/miscdata/belgium.rds
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data management; rblimp (Keller, 2024) together with the Blimp (Keller & Enders, 2023) program for 

multiple imputation; the WeMix (Bailey et al., 2023) and MLMusingR (Huang, 2025) packages for 

fitting models and combining results with plausible values, respectively. Other R functions from 

different packages were also used. Syntax for performing the current analysis are shown and can be 

modified by readers to suit their own analysis.  

Blimp, which is a standalone program, must be downloaded and installed from 

https://www.appliedmissingdata.com/blimp#blimpdownload (available for Windows, Mac, and 

Linux systems) and rblimp must be installed afterwards which will allow R to access Blimp 

functions from within R.7 rblimp is not currently on CRAN and can be installed using:  

> remotes::install_github('blimp-stats/rblimp') 

We focused on investigating how level-1 (student) and level-2 (school; cntschid) variables 

were associated with student math abilities (see Table 1). We use a mix of continuous and 

categorical predictors and with PISA 2018, mathematics scores used 10 plausible values (pvs).8 

The reason that pvs are provided is that no one student who participates in an LSA completes the 

entire battery of assessments, which would take too long, but only completes a portion (Huang, 

2024). Math abilities were predicted by gender, escs, student-immigration status, student behavior 

at the school that hinders learning and lack of staff at the school hinders instruction.  

When comparing model results using secondary datasets (with and without missing data), 

it is unclear what the results should be since the true values are unknown (unlike with simulated 

data). Instead, in this example, we selected a variable with minimal missing data, the index of 

socio, economic, and cultural (escs; 2% missing) and removed an additional 10% of the values in 

such a manner that missingness was related to the first pv in mathematics (missing at random; the 

 
7 More information about Blimp can be found at: https://github.com/blimp-stats  
8 To see an example of syntax when pvs are not used, see the online Appendix. The reason the code is slightly 
different is that imputations per pv are not needed. 

https://www.appliedmissingdata.com/blimp#blimpdownload
https://github.com/blimp-stats
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dataset can be downloaded from 

https://github.com/flh3/pubdata/raw/refs/heads/main/miscdata/belgiumwmiss.rds). In the original 

combined dataset, 90% of cases were complete and, in the instance where additional escs values 

were removed, 82% of cases were complete. We then imputed and fit multiple models using the 

dataset with 82% complete data. We compared results of the original dataset, the dataset with 

additional data removed, and finally, the combined results using multiple imputed datasets (which 

we refer to as results A, B, and C, respectively). We hypothesized that results from A and C would be 

most similar and B most dissimilar.  

Two-level random intercept multilevel models were fit with maximum likelihood using both 

student (w_fstuwt) and school-level (w_schgrnrabwt) weights using robust standard errors. 

Categorical variables are factors which in R are dummy coded automatically using the first 

reference group specified.  

Fitting Multilevel Models with the Data 

The original combined dataset is saved in the comb object and the data with the additional 

missing data is saved in the wmiss object. We use the :: notation to specifically call functions in a 

particular package (e.g., rio [Chan et al., 2018]) without having to load the library first; the 

necessary package must still be first installed using the install.packages function: 

# load in the datasets 

> comb <- rio::import("https://github.com/flh3/pubdata/raw/refs/heads/main/miscdata/belgium.rds", 

  trust = TRUE) #combined original dataset 

> wmiss <- 

rio::import("https://github.com/flh3/pubdata/raw/refs/heads/main/miscdata/belgiumwmiss.rds", 

  trust = TRUE) #dataset with additional missing data 

The models were fit using the mixPV function in the MLMusingR package (Huang, 2025) that 

can be loaded by running: 

> library(MLMusingR)  

The mixPV function makes use of the mix function in WeMix but simplifies fitting several 

models with plausible values and can automatically pool results appropriately. The mixPV and mix 

https://github.com/flh3/pubdata/raw/refs/heads/main/miscdata/belgiumwmiss.rds
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functions assume that data are nested and follow multilevel model syntax commonly used in lme4 

(Bates et al., 2015).  Weighted multilevel models were fit using both datasets: 

> library(WeMix) 

> l1a <- mixPV(pv1math + pv2math + pv3math + pv4math + 

  pv5math + pv6math + pv7math + pv8math + 

  pv9math + pv10math ~ gender + escs + immig2 + 

  stubeha + lackstaff + (1|cntschid), 

  weights = c('w_fstuwt', 'w_schgrnrabwt'), 

  data = comb, mc = TRUE) 

> l1b <- mixPV(pv1math + pv2math + pv3math + pv4math + 

  pv5math + pv6math + pv7math + pv8math + 

  pv9math + pv10math ~ gender + escs + immig2 + 

  stubeha + lackstaff + (1|cntschid), 

  weights = c('w_fstuwt', 'w_schgrnrabwt'), 

  data = wmiss, mc = TRUE) 

 

Using the mixPV function, the pvs are specified separately and weights are specified for 

each level. Weights are specified in ascending order from the lowest to highest level (e.g., student 

weights and then school weights). The mc = TRUE option allows for faster processing which turns on 

the multiple core processing option. The results of both models can be seen in Table 2.  

Imputing Datasets with Plausible Values 

 We inspect the dataset to get a better understanding of what variables have missing data. 

We can use the mice::md.pattern (van Buuren & Groothuis-Oudshoom, 2011) or the 

MLMusingR::nmiss (Huang, 2025) functions to identify the variables. 

 

> MLMusingR::nmiss(wmiss) #inspect missing data 

Percent missing per variable: 

      pv1math       pv2math       pv3math       pv4math       pv5math       pv6math  

   0.00000000    0.00000000    0.00000000    0.00000000    0.00000000    0.00000000  

      pv7math       pv8math       pv9math      pv10math       stubeha     teachbeha  

   0.00000000    0.00000000    0.00000000    0.00000000    0.03445428    0.03445428  

       gender          escs        immig2     lackstaff      w_fstuwt w_schgrnrabwt  

   0.00000000    0.12235988    0.02595870    0.05699115    0.00000000    0.00000000  

     cntschid  

   0.00000000  

 
Percent complete cases: 0.8154572  

(Minimum) number to impute: 18 

 
 Of the predictors, only gender had complete data and the range of missingness was from 

2.6% for immig2 to 12.2% for escs. Of the variables, immig2, gender, and lackstaff are factor 

variables. There is no missing data for the outcomes of pv1math to pv10math. As pvs are themselves 
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a form of imputed data (Jewsbury et al., 2024), m datasets can be imputed per pv. The total number 

of imputed datasets and models fit would then be m x number of pvs. For this tutorial, we impute 20 

datasets per pv for a total of 200 datasets. Note: for users starting out, users may want to complete 

a test case first where a few datasets are imputed (e.g., m = 2) as both imputation and pooling take 

time and allow users to debug and isolate issues if any are found.    

Imputing the Datasets 
 

In order to impute the datasets when pvs are to be used (either as a predictor or an 

outcome), the wmiss dataset, which is currently in a wide format (i.e., the pvs are listed as unique 

variables), needs to be converted into a tall (long) format where there is one variable that has pv 

values. In order to do that, the pivot_longer function in the tidyr package can be used: 

> tall <- pivot_longer(wmiss, pv1math:pv10math, values_to = 'math') 

As the pvs are contiguous variables in the dataset, we can specify pv1math:pv10math which 

indicates that the pv1math to the pv10math variable can be transposed from wide to tall. A new 

variable called name (the default variable name if the option is unspecified) is created which has 

values of pv1math to pv10math. The variable name for the outcome will be named math since 

values_to = 'math' was specified. The tall dataset now consists of 84,750 observations (i.e., 10 

pvs x 8,475 observations). We also run the following syntax which creates several new variables 

used in the imputation, data management, and model fitting processes: 

> m <- 20 #number of datasets to impute 

> ns <- nrow(wmiss) #count how many observations there are 

> tall$.pv <- as.numeric(gsub("[^0-9]", "", tall$name)) #extract the numeric value  

> nopv <- length(table(as.character(tall$.pv))) #the number of plausible values 

 

The tall$.pv variable contains the extracted numeric value from the pv1math to pv10math 

values stored in the name variable. A limitation currently of Blimp is that all variables included must 

be in numeric format. As there are three factor variables (and name is a character variable), we need 

to first run some syntax (using dplyr) to recode all nonnumeric factors into numeric variables.  
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> tall_numeric <- mutate(tall, 
  across(everything(), as.numeric) 

)  

 

In the process, the text values in the name variable are converted into NA (or missing). The 

output can be saved into a new dataset (here, a data.frame named tall_numeric). Plain numeric 

variables end up losing the descriptive factor labels (which are useful when reading the output); in a 

later step, we restore the original factor labels to the numeric variables.  

Prior to imputation, we need to know which variables are going to be entered into the model 

as dummy-coded variables, which variables are the weight and clustering variables, and which 

variable(s) have complete data (if any). In addition, the analytic model must also be known as we 

need to impute the data using this substantive model. A weight variable will also be included as a 

predictor. The function that performs the imputation is the Blimp program which is called using the 

rblimp function: 

> mymodel <- rblimp( 

  data = tall_numeric, 

  nominal = 'gender immig2 lackstaff', 

  # ordinal = '', 

  clusterid = 'cntschid', 

  fixed = 'gender w_fstuwt',  

  model = 'math ~ gender escs immig2  

           stubeha lackstaff w_fstuwt',  

  options = 'labels', 

  seed = 1234, 

  nimps = m 

) |> by_group('.pv')  

 

 Several arguments are specified:  

- data: the name of the dataset with missing data. 

- nominal: the variables in the model which will be entered as dummy codes. 

- ordinal: the variables in the model which have values which represent ordered 

categories (e.g., such as Likert scales that may have values ranging from 1 = strongly 

disagree to 4 = strongly agree). This is not used in the current example. Although the 

lackstaff variable may be considered ordinal, in the analytic model, this is entered as a 

dummy coded variable with the first variable label representing the reference group so 
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this is included in the nominal argument instead. Ordinal variables also take longer to 

impute compared to nominal variables.  

- clusterid: represents the name of the clustering or grouping variable. For three-level 

models, the second-level id comes before the third-level id (i.e., clusterid = 

'level2id level3id'). Currently, Blimp cannot model cross-classified data structures.   

- fixed: indicates the predictor variables with no missing data. 

- model: represents the substantive model used in the imputation process. Note that the 

model statement represents how the analytic model will be fit with the addition that the 

weight variable is included as a predictor (here we use the student-level weight).  The 

model formula is entered except that a space is used to separate variables (instead of 

the + used in models in R). If interactions are to be tested in the analytic model, they 

should be included and simply entered as variable1 * variable2. If a random slope 

model is to be fit, a pipe operator can be added at the end of the model statement 

followed by the variables which are expected to randomly vary by group. For example, if 

escs is expected to randomly vary, add “| escs” at the end of the model statement. As 

the current model does not include that, a random intercept model was fit.  

- The option = 'labels' argument is included which can help assess if there are 

variables which may require some consideration in the imputation process (explained 

later). 

- seed: a specified seed number is included to be able to reproduce results. As every 

imputation uses some random noise to vary imputation results from imputation to 

imputation, a seed is required to obtain identical results in the future (or if the 

imputation is done by another researcher, the same imputed datasets will be created). 

The seed can be any numeric value with less than 10 digits and is required. 
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- nimp: specifies the number of datasets to impute. This can be hardcoded (i.e., nimp = 

20) but in this case, we created an m variable (i.e., m <- 20) earlier which will be used in 

succeeding code as well. 

After all the options are specified in the rblimp function, we add |> by_group('.pv') which 

indicates that the m imputations are performed for each pv separately. The |> operator is known as 

the pipe operator which was introduced in R 4.1.0. Without the by_group option specified, only m 

imputations are performed (regardless of the number of pvs). The output for the rblimp function is 

saved in the mymodel object. This process can take a while depending on how many imputations are 

requested. Using a Windows PC with an AMD Ryzen 9 processor with 16 gb of RAM required 35 

minutes to complete. As indicated, for a trial run, users can set m = 2 first to test if everything works 

properly. 

 Post imputation, we can check the quality of imputations. As the imputation process uses 

what is referred to as Bayesian sampling, the Potential Scale Reduction (PSR) factor, also known as 

the r-hat (𝑅̂) value (Gelman & Rubin, 1992), can be inspected. PSR values close to 1 are desirable 

and high PSR values may signal that more imputations or iterations are needed. For each parameter 

estimated, a maximum PSR of < 1.1 suggests that the sampler has “converged satisfactorily” 

(Carpenter et al., 2023, p. 229). To check the maximum PSR per imputation, we enter: 

> mymodel |> sapply(\(x) tail(x@psr, 1) |> max(na.rm = TRUE)) 

 

     1      2      3      4      5      6      7      8      9     10  

1.0462 1.0307 1.0361 1.0392 1.0603 1.0540 1.0407 1.0645 1.0301 1.0451 

 

Results suggest that imputations are fine as the maximum PSR out of all the estimates per 

plausible value are < 1.1. If, however, there are PSRs > 1.1, figuring out the variables with high PSRs 

can be inspected by using: 

> lapply(mymodel, psr) 
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The output is long and scrolling through the results (not shown) can indicate which variables 

are responsible for contributing to the highest PSRs. The options = 'labels' statement allows the 

researcher to view the variables related to the PSR values.  

Fitting the Analytic Model of Interest 

 The final steps in the process involve getting the imputed data in a format amenable for the 

analysis of interest, fitting the models, pooling the results, and summarizing the output. All the 200 

imputed datasets are saved in the mymodel object and to extract them all in one large dataset, we 

use: 

> impdat <- lapply(mymodel, as.mitml) |> 

  unlist(recursive = FALSE) |> 

  do.call(rbind, args = _) 

 

The object impdat contains 1.7 million observations and consists of the datasets stacked on 

top of each other in a single data frame. This will not be used yet in the analysis but allows users to 

perform some more basic data management prior to the analysis (e.g., combining certain variables 

to form a scale, recoding certain variables). We also need to number the imputations in the data 

frame using: 

> impdat$.implist <- rep(1:(m * nopv), each = ns) 

Using table(impdat$.implist) will show that there are 8,475 observations in each of the 

200 iterations (output not shown).  At this point, we can also convert the numeric variables back to 

factors with the factor labels. As it currently is, we only see a list of numeric values for our original 

factors—for example, using the lackstaff variable, we see only categories of 1 through 4: 

> table(impdat$lackstaff) 

 

     1      2      3      4  

250958 720793 576658 146591  

 

To copy the factor attributes from the original comb dataset, we can use: 

> attributes(impdat$lackstaff) <- attributes(comb$lackstaff) 

> table(impdat$lackstaff) 
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    Not at all    Very little To some extent          A lot  

        251676         720205         578231         144888 

 

We convert the other two numeric variables to factors as they were originally: 

> attributes(impdat$gender) <- attributes(comb$gender) 

> attributes(impdat$immig2) <- attributes(comb$immig2) 

 

Converting the variables back to factors is necessary and helps when viewing regression 

results. As a final step before performing the analysis, we need to convert the data frame back into 

a list which R can use. A list in R can be a container of different types of data and can consist of 

multiple datasets which can be analyzed one at a time. To create a list called alldat, we split the 

impdat data by the imputation number which is comprised of both the pv and the imputation 

number.  

> alldat <- split(impdat, impdat$.implist) 

Once the data are in a list format, we can apply a function to all the elements of a list and 

save the results of each model fit. We use the lapply function (“list apply”) in R which requires the 

list to use (alldat) and the function (FUN = )  to perform. We name the function modfit (model fit). 

Output is saved in the allres object. When researchers are using their own data, the modfit 

function should be modified as necessary.9  

> modfit <- function(x) { 

  mix(math ~ gender + escs + immig2 + stubeha + 

      lackstaff + (1|cntschid), 

  weights = c('w_fstuwt', 'w_schgrnrabwt'), 

  data = x) 

} 

> allres <- lapply(alldat, FUN = modfit) 

 

The function(x) signifies that the following lines are part of a function and the x acts as a 

placeholder for the 200 elements (in this case the 200 datasets) in the impdat list. Although the 

model will be fit as specified, this procedure is not generally recommended as models are fit to 

each element of the list in a serial fashion, one at a time which can take a large amount of time. 

 
9 For more information on using the mix function, see https://cran.r-
project.org/web/packages/WeMix/vignettes/Introduction_to_Mixed_Effects_Models_With_WeMix.pdf  

https://cran.r-project.org/web/packages/WeMix/vignettes/Introduction_to_Mixed_Effects_Models_With_WeMix.pdf
https://cran.r-project.org/web/packages/WeMix/vignettes/Introduction_to_Mixed_Effects_Models_With_WeMix.pdf
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Using a Windows PC with an AMD Ryzen 9 processor with 16 gb of RAM required 48 minutes to 

complete. However, with the availability of multiple processing cores in modern computers, the 

models can be fit in parallel where several models are fit at the same time. Using parallel 

computing, only 4.2 minutes were required using the following syntax (the parallel package is 

already installed with R by default).  

> library(parallel) 

> library(doParallel) 

> cl <- makeCluster(detectCores() - 1) 

> registerDoParallel(cl) 

> clusterExport(cl, list('modfit', 'mix')) 

> allres <- parLapply(cl, alld2, fun = modfit) 

> stopCluster(cl) 

 

After the 200 models are fit, results need to be combined using Rubin’s (1987) rules. The 

mixPV summary function can pool the results from the 200 models. The saved output though must 

first be classified as a mixPV object for the summary function to work. 

> class(allres) <- 'mixPV' 

> summary(allres) 

 

Comparing fixed effect model results for models fit using the dataset with 90% complete, 

82% complete, and the imputed datasets (or models A, B, and C, respectively) show that the 

imputed (A) and 90% complete results (C) are closest to each other (see Table 2). However, with the 

82% complete dataset (B), larger differences were seen especially with the level-2 coefficients 

(even though the only additional missing data was added to a level-1 variable). In addition, the 

intercept also differed to a larger extent when 82% of the data were complete. In terms of the 

random effects, ICCs were lower for the dataset with 82% complete data (see Table 3). 

Conclusions 

 Although missing data are commonly found in LSAs, a common approach to handling 

missing data is through the use of listwise deletion which has been shown, over several decades of 

research, to be a suboptimal strategy. Using freely available software, we provide a step-by-step 

tutorial for researchers using R and the Blimp program that can be used to impute missing data in a 
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multilevel setting. Particular attention should be paid to clustered, weighted data that use plausible 

values, such as the data structures found in LSAs (a slightly simpler approach when pvs are not 

used is shown in the Appendix). Interested readers can use the provided syntax and modify the 

code as necessary to suit their analytic models and there should be fewer reasons to resort to 

listwise deletion.   
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Table 1.  
Descriptive Statistics for the PISA Belgium 2018 Dataset. 

Variable Description M (SD) n (%) % missing 
Student-level (n = 8,475)    
pv1math to pv10math Ten plausible 

variables for 
mathematics 

~510 (~95)  0 

gender (st004d01t)   Male = 4204 (49.6) 
Female = 4271 (50.4) 

0 

escs Index of economic, 
social, and cultural 
status 

0.10 (0.92)  2% / 12%* 

immig2 (immig) Immigration status  Native = 6782 (80) 
2nd gen = 812 (10) 
1st gen = 661 (8) 

3% 

School level (n = 288)    
lackstaff 
(sc017q01na) 

School’s 
instruction 
hindered by a lack 
of: teaching staff 

 Not at all = 42 (15) 
Very little = 112 (39) 
To some extent = 95 (33) 
A lot = 22 (8) 

6% 

stubeha Student behavior 
hindering learning 

0.29 (0.71)  3% 

Notes. Unweighted statistics shown. *Additional cases removed.  
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Table 2.  
Comparison of Fixed Effect Model Results with Differing Levels of Missing Data and Using 200 
Multiply Imputed Datasets 

 90% 
complete 

82% 
complete Imputed  

(Intercept) 499.886*** 520.934*** 496.875*** 
 (10.312) (9.069) (10.737) 
Student level    
Female -20.890*** -18.840*** -19.495*** 
 (2.428) (2.458) (2.315) 
escs 17.674*** 16.991*** 18.878*** 
 (1.510) (1.625) (1.724) 
Second-Generation1 -22.650*** -21.346*** -22.306*** 
 (3.872) (4.086) (3.622) 
First-Generation1 -27.046*** -24.955*** -26.349*** 
 (4.877) (4.972) (4.598) 
School level    
Student behavior -36.355*** -32.648*** -37.677*** 
 (5.522) (4.961) (5.536) 
Very little2 27.385* 12.016 28.116* 
 (13.242) (12.071) (13.967) 
To some extent2 9.347 -2.166 9.227 
 (13.758) (11.475) (14.198) 
A lot2 22.942 8.459 21.613 
 (15.232) (13.701) (18.353) 
n 7,676 6,911 8,475 
No of plausible values/imputed datasets 10 10 200 
Notes. 1Immigration status. Native is the reference group. 2School instruction hindered by lack of 
staff. Reference group is not at all. Robust standard errors in parenthesis. + p < .10.  * p < .05. *** p 
< .001.  
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Table 3.  
Comparison of Random Effects Estimates with Differing Levels of Missing Data and Using Multiply 
Imputed Datasets 

 90% complete 82% complete Imputed  
School intercept - 𝜏00 2714.714*** 2137.460*** 2878.599*** 
 (362.64) (370.14) (377.84) 
Residual - 𝜎2 4385.549*** 3885.879*** 4353.262*** 
 (179.61) (165.66) (163.94) 
ICC .38 .35 .40 
Notes. *** p < .001. ICC = intraclass correlation coefficient. Robust standard errors in parenthesis.   

 


