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Abstract

Clustered data are a common occurrence in the social and behavioral sciences and pose
a challenge when analyzing data using confirmatory factor analysis (CFA). In addition
to potentially compromising point estimates and standard errors, factor structures may
also differ between levels of analysis when using nested data. However, multilevel CFA
(MCFA) can address these concerns and although the procedures for performing MCFA
have been proposed over a decade ago, the practice has seen little use in applied psycho-
metric research. This article presents a step-by-step procedure for conducting a MCFA
with R using the lavaan package. The dataset and complete R syntax, as well as a function
for generating the required matrices, are provided.
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1. Introduction

The analyses of nested data is fairly common in social and behavioral research where naturally
occurring clustered data structures (e.g., students within schools, patients within hospitals)
are found. Ignoring the clustered nature of the data violates the well-known assumption of
observation independence (Cohen, Cohen, West, and Aiken 2003). In a regression framework,
researchers will often use multilevel modeling (Raudenbush and Bryk 2002) or some other
alternative technique (Huang 2016) to account for the clustered nature of the data. However,
in a factor analytic framework, nested data structures are often ignored despite warnings
that “the application of covariance models to multilevel data without accounting for the
dependencies among observations is a potentially dangerous practice” (Julian 2001, p. 342).

Although the procedures for performing multilevel confirmatory factor analyses (MCFA) were
outlined over a decade ago (Hox 2002; Muthen 1994), the practice has seen infrequent use in
applied research (Byrne, 2012). Konold, Cornell, Huang, Meyer, Lacey, Nekvasil, Heilbrun,
and Shukla (2014) suggested several reasons why this may be the case: 1) limited number
of software packages capable of automatically running such analyses; 2) estimation and con-
vergence issues; or 3) a failure to recognize the nested data structure when present. Heck
and Thomas (2008) indicated only a few years ago that getting the software to estimate
multilevel factor analytic models were “programming nightmares for even simple within- and
between-group factor models” (p. 114).

In this article, we discuss the relevance of MCFA and outline the steps for performing a
MCFA using the freely available R software with the lavaan (latent variable analysis; Rosseel
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2012) package. Though several books have documented how to perform factor analysis using
R (e.g., Beaujean 2014; Finch and French 2015), procedures for conducting a MCFA are not
readily available and as of yet are not built-in lavaan. Results are then compared to MCFA
conducted using Mplus.

1.1. The need for multilevel CFA

Properly accounting for the clustered nature of the data is not merely a technical issue.
Not accounting for clustering in factor analysis can result in biased parameter estimates,
misestimated standard errors, and a distorted view of model fit (Julian 2001; Kaplan and
Elliott 1997; Muthen and Satorra 1995). Although several techniques can partially account
for the clustered nature of the data by adjusting standard errors (e.g., demeaning the data,
using the type = complex option in Mplus), these procedures assume that factor structures at
the individual and group levels are the same. If factor structures are the same at both levels,
factor structures are referred to as invariant (Schweig 2013), homologous (Chen, Bliese, and
Mathieu 2005), or isomorphic (Kozlowski and Klein 2000). Unfortunately, the assumption
of factor model invariance may often be violated in practice (Zyphur, Kaplan, and Christian
2008). Although invariance is often used in the comparison of factor models across different
groups, we use the term invariance in this article to refer to differences in the factor structures
at the between- and within-levels of analysis.

In many situations, individual level data are collected and aggregated to form group-level
scales (Chan 1998). Two common examples from educational research include the measure-
ment of school climate and the student ratings of teacher effectiveness. In both instances, both
the individual- and group-level composites are meaningful though the group-level aggregates
are of particular interest and the basis of policy relevant decisions. Constructs themselves may
have different interpretations based on the level analysis (Bliese 2000; Roux 2004) and some
constructs may have meaning at the individual level (e.g., personality traits), the group level
(e.g., racial diversity), or both (e.g., individual feelings of safety vs. a school safety scale).
In such cases, factor analytic techniques are frequently used to provide a basis for combining
individual item responses to form the scales of interest.

However, studies have shown that nested data may have factor structures that differ by level of
analysis and thus may result in erroneously formed composites (D’Haenens, Van Damme, and
Onghena 2010; Dyer, Hanges, and Hall 2005; Huang, Cornell, and Konold 2014). For example,
a review of school climate measures has shown that of the dozen instruments investigated,
none were analyzed using MCFA and often only used traditional single-level CFA (Ramelow,
Currie, and Felder-Puig 2015) despite school climate being a property of the school and
not of any single individual reporter (Griffith 1997; van Horn 2003). Group-level composites
formed on the basis of factor structures derived from single-level CFA may result in misleading
conclusions (Schweig 2013). Drawing incorrect conclusions about the relationship of variables
between groups based on individual-level data has been referred to as an atomistic fallacy
(Roux 2002).

1.2. Decomposing the within- and between-group covariance matrices

Traditionally, clustered data have been analyzed using CFA by focusing on either the lowest
level of measurement (i.e., scores from individuals) or aggregating scores to the higher level
of measurement (i.e., group averaged scores) and then using single-level analysis (Heck 2001).
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However, using single-level analysis for the analysis of multilevel data may not be optimal
and is associated with a set of analytic and interpretation difficulties (see Byrne 2012).

Compared to single-level CFA, MCFA allows researchers to consider both levels of data si-
multaneously. More specifically, MCFA involves partitioning the total population covariance
matrix, ΣT, into a within-covariance matrix, ΣW, and a between-covariance matrix, ΣB, to
estimate both within- and between-cluster effects. The two variance components are orthog-
onal and additive which means that the relationship among variables between groups do not
have to be the same (but they could be) as the relationship that exists within groups.

Using sample data, the total (or overall) covariance matrix, ST, can also be decomposed into
SB and SW matrices. However, running a MCFA using the SB and SW matrices to estimate
both ΣW and ΣB is not as straightforward (Hox 2002). Instead, two sample covariance
matrices need to be defined: SPW, the pooled within covariance matrix and SB, the between
group covariance matrix.

The SPW matrix is an unbiased estimate of the population within groups covariance matrix,
ΣW (Muthen 1994). The pooled within covariance matrix is calculated by:

SPW = (n−G)−1
G∑
g=1

ng∑
i=1

(yig − yg)(yig − yg)′

where n is the total sample size, G is the number of groups, yig is the score of observation i
nested in group g and yg is the cluster specific mean in group g. SPW is also equivalent to the
covariance matrix of individual deviation scores from the group means with the exception that
the denominator is n−G instead of n−1. Factor analyzing the SPW matrix is straightforward
and does not present any modeling challenges. A simple way to generate the SPW can be
done by group-mean centering all the variables of interest, generating a covariance matrix
using the centered variables, multiplying the covariance matrix by n − 1, and then dividing
the product by n−G.

The sample between-group covariance matrix SB can be calculated using:

SB = (G− 1)−1
G∑
g=1

ng(yg − y)(yg − y)′

where y represents the overall grand mean. Similarly, SB can be computed by generating a
covariance matrix using the deviation scores of the repeating group means from the overall
grand mean, multiplying the matrix by n − 1 to compute the sums of squares, and then
dividing again by G−1. Unfortunately, SB is a biased estimator of ΣB and actually estimates
a combination of both ΣW and ΣB such that SB = ΣW + c.ΣB where c. represents the
average cluster size (Muthen 1994). For unbalanced cases (which is most often the case), c.
is computed as:

c. = [n2 −
G∑
g=1

n2g][n(G− 1)]−1

and in many instances, c. will be approximately n/G. As a result, ΣB can be roughly
estimated by c.−1(SB − SW). The expected value then of ΣB is comprised of one unit of
within-group variance and c. units of between-group variance.
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Performing the between-group portion of the CFA model, when not done automatically using
software such as Mplus, requires the use of an unconventional, manual multigroup CFA anal-
ysis wherein the sample within and between matrices are used simultaneously with a specific
set of constraints. Although articles and book chapters have illustrated how to conduct the
analyses using software such as EQS, LISREL (Stapleton 2006) and Mplus (Dyer et al. 2005),
no article shows how to perform this procedure using freely available software using R which
is the focus of this manuscript.

2. The process for performing a MCFA

As Muthen (1994) noted that MCFA may not always converge, methodologists have recom-
mended step-by-step procedures to allow researchers to carefully build their models and debug
issues that may arise. Two popular and similar procedures were proposed by Muthen (1994)
and Hox (2002). Of the two, Muthen’s method is most commonly used though Hox’s steps
have been said to be the most straightforward (Selig, Card, and Little 2008). Both proce-
dures require the SPW and SB matrices and the estimated c. scaling factor.1 We describe
the procedures outlined by Hox (2002) though keeping in mind that the same setup can also
be performed following Muthen’s (1994) steps.

2.1. Conducting a MCFA using clustered data

To illustrate the procedures used in performing a MCFA, we use the R software environment
(R Core Team 2016) with the lavaan (Rosseel 2012) package installed. Several freely available
tutorials on using lavaan are available (Rosseel 2016).2 We provide a function, mcfa.input(),
that can be used to generate all the necessary matrices used in the analyses based on the raw
data. The function can be loaded into R by using the statement:

R> source('http://faculty.missouri.edu/huangf/data/mcfa/mcfa.R')

We will analyze a random subset of data from a school climate dataset where 3,894 teach-
ers from 254 schools provided their perceptions of student engagement (Huang and Cornell
2015a). Six questions (variables x1 to x6) asked teachers about their perceptions of student
engagement (see Table 1 for the questions and descriptive statistics) and response options
used a six point scale (1 = strongly disagree, 2 = disagree, 3 = somewhat disagree, 4 =
somewhat agree, 5 = agree, 6 = strongly agree).

The procedures outlined use the covariance matrices as the inputs for the analyses. Prior
published studies (Huang, Cornell, Konold, Meyer, Lacey, Nekvasil, Heilbrun, and Shukla
2015) suggest the presence of two factors at level one (i.e., cognitive and affective engagement)
and one factor at level two (i.e., an overall school-level factor of general engagement). Often,
simpler factor structures are found at the higher level (Dedrick and Greenbaum 2011; Dyer
et al. 2005; Huang et al. 2015).

Using the mcfa.input() function provided, the SB and SPW were generated along with the c.
scaling factor which was 15.31, close to the average cluster size of 15.33. To use the function,

1Hox also provides a free DOS program, Split2.exe, available at http://joophox.net/papers/papers.htm to
generate correlation matrices and also computes the scaling factor.

2An online tutorial is available at http://lavaan.ugent.be/tutorial/index.html
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Variable Item M SD Skew ICC

x1 Students generally like this school. 4.78 0.88 -1.08 0.20
x2 Students are proud to be at this school. 4.61 0.99 -0.84 0.25
x3 Students finish their homework at this school. 3.54 1.17 -0.39 0.15
x4 Students hate going to school. (reverse coded) 4.38 1.05 -0.67 0.11
x5 Getting good grades is very important to most 4.24 1.10 -0.55 0.25

students here.
x6 Most students want to learn as much as they 3.95 1.11 -0.54 0.13

can at this school.

Table 1: School engagement survey questions (n = 3,894 students in 254 schools).

the user must provide the name of the grouping variable as well as the dataset containing
only the grouping variable and the variables of interest. Users must read in the dataset and
then use the function with their dataset. For example, a csv (comma separated values) file
is read into an object called raw and then the function is applied to the dataset specifying
that sid (the name of the school id variable in the dataset) is the clustering variable (must
be within quotes). All the output is stored into a new object x which can be used for the
various input elements needed for the subsequent analysis.

R> raw <- read.csv("http://faculty.missouri.edu/huangf/data/mcfa/raw.csv")

R> x <- mcfa.input("sid", raw)

Using a structure function on the x object, str(x), will display the contents of x and the
names of the list objects within. To access the data stored within x, users can use the $

notation in R to directly refer to the data. For example: for the SPW matrix, users can enter
x$pw.cov; for total sample size, users can enter x$n; for the number of groups, users can enter
x$G.

Step 1: The level one model

The first step in Hox’s (2002) procedure is to conduct a factor analysis only using the SPW

matrix, ignoring SB. The effective sample size for the analysis is n − G or 3,640. If an
adequate fit is not found, there is little point in proceeding and researchers should revisit
their theory behind their CFA.

We conducted a test using both a basic one- and two-factor model. Performing a CFA in
lavaan involves three steps: 1) specifying the model, 2) fitting the model, and 3) viewing the
summary statistics. The models are specified using the syntax provided and are fit using the
cfa() function in lavaan. In lavaan model syntax, the operator “=~” is short for “measured
by” and is equivalent to the by statement in Mplus. To define a one factor model, where the
factor is named f1, using the six manifest variables, the model specification would read:

R> onefactor <- 'f1 =~ x1 + x2 + x3 + x4 + x5 + x6'

The onefactor object is referred to as a model syntax object. To define the two factor model
(see Figure 1), where the first factor is affective engagement and the second factor is cognitive
engagement, the model specification would be:
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Figure 1: Single-level two factor model.

R> twofactor <- 'f1 =~ x1 + x2 + x4; f2= ~x3 + x5 + x6'

Automatically, the factor loading of the first indicator of a latent variable is fixed to 1 to
set the scale of the factor, the same as the default option in Mplus. Residual variances are
automatically added as well and all exogenous latent variables are correlated by default. As
we will see shortly, we will have to override the default options to properly specify a multilevel
factor model.

Once model object has been defined, a model is fit using the cfa() function where the first
argument is the model object containing the model definition specified by the researcher. The
second argument indicates the source and type of the data to be analyzed (sample.cov =

x$pw.cov) and the third argument indicates the effective number of observations (sample.nobs
= x$n-x$G). In other words, the model is being fit using the pooled within group covariance
matrix as input and the effective sample size is 3,640. To fit the onefactor model example
and save the output into another object (e.g., results1), the syntax would read:

R> results1 <- cfa(onefactor, sample.cov = x$pw.cov, sample.nobs = x$n - x$G)

After the model has been fit, the summary() function can provide the measures of model fit
(fit.measures = T) and the factor loadings as is commonly seen in other latent variable
modeling programs. We also request for standardized loadings using the standardized = T

argument. The syntax would read:

R> summary(results1, fit.measures = T, standardized = T)

As we have 21 pieces of unique data (i.e., 6 variances and 15 covariances) and for a one factor
model, we are estimating 5 factor loadings, 6 residual variances, and 1 factor variance; 9
degrees of freedom are left (i.e., 21-12). For a two factor model, 13 parameters are estimated
leaving 8 degrees of freedom. As expected based on prior research, the one factor model did
not fit the data well, χ2(9) = 1,971.60, RMSEA = .245, CFI = .790, TLI = .650, SRMR =
.081, but the two factor model had a good fit, χ2(8) = 53.95, RMSEA = .040, CFI = .995,
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TLI = .991, SRMR = .021. If all the researcher wanted was a level-one CFA model that had
unbiased estimates as a result of clustering, the researchers could stop and interpret results
appropriately. Group mean centered variables, as a result of demeaning the data, have been
stripped of group-level effects. So far, not much is different from a standard CFA model with
the exception that SPW is used instead of ST and the number of observations is n−G.

Step 2: The null model

For step 2, a null model is specified where both the SPW and SB matrices are used in a
multigroup setup using the factor structure defined at step 1 on both matrices with all equality
constraints set to be equal. We do not really have two groups but the multigroup setup will
be used to analyze both the ‘within group’ and the ‘between group’ matrices simultaneously.

In lavaan, multiple input covariance matrices and the sample sizes for each are stored in a list
object:

R> combined.cov <- list(within = x$pw.cov, between = x$b.cov)

R> combined.n <- list(within = x$n - x$G, between = x$G)

The first object in the list refers to group one and the second object refers to group two and we
create two new objects (i.e., combined.cov and combined.n) that contain the two covariance
matrices (i.e., SPW and SB) and the sample size for each (n−G and G, respectively).

Next, a model imposing the equality constraints must be specified. In this step, the model
specification expands quite a bit. In lavaan, the equality constrains are imposed for the par-
ticular variable by indicating c(a,a)*variable where c() is the concatenate function, a is
a label assigned by the user to indicate that loading a for group one is set to be equal for
loading a in group two. The same label names instruct lavaan to use the same estimates be-
tween groups or in other words, specify equality constraints. To specify equal factor loadings
for both factors for the within and between models, we indicate: f1 =~ x1 + c(a,a)*x2 +

c(b,b)*x4; f2 =~ x3 + c(c,c)*x5 + c(d,d)*x6. The loadings for x1 and x3 are auto-
matically set to 1 so do not need to be specified.

R> nullmodel <- '
+ f1 =~ x1 + c(a,a)*x2 + c(b,b)*x4

+ f2 =~ x3 + c(c,c)*x5 + c(d,d)*x6

+ x1 ~~ c(e,e)*x1

+ x2 ~~ c(f,f)*x2

+ x3 ~~ c(g,g)*x3

+ x4 ~~ c(h,h)*x4

+ x5 ~~ c(i,i)*x5

+ x6 ~~ c(j,j)*x6

+ f1 ~~ c(k,k)*f1

+ f2 ~~ c(l,l)*f2

+ f1 ~~ c(m,m)*f2

+ '
R> results3 <- cfa(nullmodel, sample.cov = combined.cov,

+ sample.nobs = combined.n)

R> summary(results3, fit.measures = T, standardized = T)
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In addition to the factor loadings, the variance and covariance for each of the variables and
latent factors must also set to be equal across both groups. To specify the variance/covariance
of a variable or factor, the operator ~~ is used such that x1 ~~ c(e,e)*x1 indicates that the
variance for x1 will be held constant between groups. Factor variance and the covariance be-
tween the two factors must also be constrained to be equal. The statement f1 ~~ c(m,m)*f2

indicates that the covariance between the two latent variables (f1 and f2) are constrained to
be equal between models. The syntax has gotten a bit longer (see appendix) though much
of this could be done through careful copying and pasting. The label names (e.g., e and m )
can be set to any other labels (beginning with a letter) though must be the same to specify
holding those constant between groups (or in this case, between levels).

For the null model, since we are using two matrices (SPW and SB), we now have 42 pieces
of unique data but are still estimating only 13 parameters instead of 26 since we have con-
strained them to be equal between models. As a result, 29 degrees of freedom (i.e., 42-13)
are left. After specifying the model, the cfa() function is once again used but this time,
the combined.cov and combined.n lists are used as inputs for the covariance matrix and the
sample size indicator. As before, the summary() function is used to investigate model fit.

The resulting null model fit poorly, χ2(29) = 1,237.56, CFI = .890, TLI = .886, RMSEA =
.146, SRMR = .229. The poor fit of the model indicates that there is between-group variance
to be explained and if the null model had an acceptable fit, researchers could tentatively
conclude that there appears to be no statistically significant group-level variance (Stapleton
2006).

In Muthen’s (1994) steps, one step investigates how much variability is attributable to the
group level which is indicated by the intraclass correlation where ρ = (σ2B +σ2W )−1σ2B of each
manifest variable. The within-group variance can be obtained from the diagonal of the SPW

matrix and the between-group variance can be obtained from the diagonal of the c.1(SB −
SPW) matrix. The adjusted (or scaled) between group covariance matrix is automatically
estimated using the mcfa.input() function and can be retrieved using x$ab. Alternatively,
ICCs can be computed using an ANOVA framework where [MSB−MSW ]/[MSB+c.MSB].
However, there is no real threshold as to what comprises a large ICC and even slight depar-
tures from zero can signify that the multilevel nature of the data should be accounted for
(Julian 2001). The ICCs are also computed using the mcfa.input() function and ICCs can
be retrieved by indicating x$icc. Reporting ICCs is standard practice when dealing with
clustered data and for the current dataset, ICCs ranged from .11 to .25 (see Table 1).

Step 3: The independence model

For step 3, Hox (2002) proposed to estimate an independence model at the group level. As
S∗B = ΣW + c.ΣB, we begin estimating the between portion of the model by creating six
new group-level ‘factors’ (see Figure 2). Step 3 now requires the use of the c. scaling factor
and each manifest variable variance is composed of one unit for SPW and a portion of SB

variance. Each new group level factor has a specified loading of
√
c. or 3.91 (the square root

of 15.31) to its corresponding manifest variable (Muthen 1994). The square root of c. is also
automatically computed using the mcfa.input() and can be retrieved using x$sqc. Note, in
the model syntax, modelers must manually specify the scaling factor (i.e., 3.91).

When specifying the model, additional syntax must be included to properly define the new
factors that are only estimated for level 2 and not for the level 1 model. To define a new group
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Figure 2: Two factor null model.

level factor, we use: x1b =~ c(0,3.91)*x1 where x1b is the name of the level 2 factor (we
use a ‘b’ so we remember it is a between level factor and to also differentiate it from the first
level variable which is just x1) and c(0,3.91)*x1 indicates that for the first model (which
is the within model), x1b is not estimated as indicated by the 0 and for the second model
(the between level model), the loading is fixed to 3.91 for x1. Since there are six manifest
variables, we create six new latent variables, from x1b to x6b.

R> independence <- '
+ f1 =~ x1 + c(a,a)*x2 + c(b,b)*x4

+ f2 =~ x3 + c(c,c)*x5 + c(d,d)*x6

+ x1 ~~ c(e,e)*x1

+ x2 ~~ c(f,f)*x2

+ x3 ~~ c(g,g)*x3

+ x4 ~~ c(h,h)*x4

+ x5 ~~ c(i,i)*x5

+ x6 ~~ c(j,j)*x6

+ f1 ~~ c(k,k)*f1

+ f2 ~~ c(l,l)*f2

+ f1 ~~ c(m,m)*f2

+ x1b =~ c(0,3.91)*x1

+ x1b ~~ c(0,NA)*x1b

+ x2b =~ c(0,3.91)*x2

+ x2b ~~ c(0,NA)*x2b

+ x3b =~ c(0,3.91)*x3

+ x3b ~~ c(0,NA)*x3b

+ x4b =~ c(0,3.91)*x4

+ x4b ~~ c(0,NA)*x4b

+ x5b =~ c(0,3.91)*x5

+ x5b ~~ c(0,NA)*x5b
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+ x6b =~ c(0,3.91)*x6

+ x6b ~~ c(0,NA)*x6b

+ '
R> results4 <- cfa(independence, sample.cov = combined.cov,

+ sample.nobs = combined.n, orthogonal = T)

R> summary(results4, fit.measures = T)

In addition to defining the latent level 2 variables, we must also estimate the variance for
these latent variables using the following model statement: x1b ~~ c(0,NA)*x1b. Again,
the “~~” indicates that this is a variance estimate and new to this is the use of c(0,NA)*x1b
which specifies that the variance of the level 1 variable is not estimated as indicated again
by the 0 and that the variance of the level 2 variable is estimated as indicated by the NA.
This specification is important because if this is not explicitly specified, lavaan will attempt
to estimate the variance for the latent factors in both groups even if the new b variables only
exist for the between level model.

Although the group-level loadings are fixed for the new latent variables and do not consume
any degrees of freedom, the variance for each of the latent variables must be estimated.
As a result, we are left with 23 degrees of freedom. The six new latent factors are not
allowed to covary at this step which is why this step is referred to as the independence model.
For the cfa() function beginning in this step, an additional argument must be specified:
orthogonal=T. Using this argument, only the factors we allow to covary will actually covary
as all factors will be independent of each other. If this is not specified, the covariance of all the
factors will be estimated which is the default for lavaan but is not appropriate for our model.
Model fit once again is mixed though may be considered poor by a majority of fit indices,
χ2(23) = 815.61, CFI = .928, TLI = .906, RMSEA = .133, SRMR = .176. If the independence
model fit well, the conclusion would be that there is substantial group-level variance but there
is no substantively interesting structural model (Hox 2002). If the independence model did
not fit well, that suggests that there is some kind of structural model at the group level that
should be modeled.

Step 4: The saturated model

For step 4, or testing the saturated model, the latent variables defined in step 3 are now allowed
to covary with each other. Since there are 6 latent variables, a total of 15 covariance estimates
will be calculated (i.e., [k × (k − 1)]/2 where k is the number of variables). Importantly, in
this step, since the variables only exist at level 2, variance must be estimated only for the
level 2 latent variables. This is specified by using the statement: x5b ~~ c(0,NA)*x6b where
in this example, the covariance of the x5b and x6b latent variables are estimated only for
level 2 which is indicated by an NA. The NA option indicates that the parameter will be
estimated and again, the 0 indicates that the parameter will not be estimated (for level 1). A
shortcut for specifying the covariance for multiple variables can be done using the form: x4b
~~ c(0,NA)*x5b + c(0,NA)*x6b where the covariance is estimated between x4b and x5b
also for x4b and x6b. The rest of the R code merely specifies that all latent level 2 variables
are correlated with each other and the orthogonal = T option must continue to be specified.

R> saturated <- '
+ f1 =~ x1+c(a,a)*x2 + c(b,b)*x4
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+ f2 =~ x3+c(c,c)*x5 + c(d,d)*x6

+ x1 ~~ c(e,e)*x1

+ x2 ~~ c(f,f)*x2

+ x3 ~~ c(g,g)*x3

+ x4 ~~ c(h,h)*x4

+ x5 ~~ c(i,i)*x5

+ x6 ~~ c(j,j)*x6

+ f1 ~~ c(k,k)*f1

+ f2 ~~ c(l,l)*f2

+ f1 ~~ c(m,m)*f2

+

+ x1b =~ c(0,3.91)*x1

+ x1b ~~ c(0,NA)*x1b

+ x2b =~ c(0,3.91)*x2

+ x2b ~~ c(0,NA)*x2b

+ x3b =~ c(0,3.91)*x3

+ x3b ~~ c(0,NA)*x3b

+ x4b =~ c(0,3.91)*x4

+ x4b ~~ c(0,NA)*x4b

+ x5b =~ c(0,3.91)*x5

+ x5b ~~ c(0,NA)*x5b

+ x6b =~ c(0,3.91)*x6

+ x6b ~~ c(0,NA)*x6b

+

+ x1b ~~ c(0,NA)*x2b + c(0,NA)*x3b + c(0,NA)*x4b + c(0,NA)*x5b + c(0,NA)*x6b

+ x2b ~~ c(0,NA)*x3b + c(0,NA)*x4b + c(0,NA)*x5b + c(0,NA)*x6b

+ x3b ~~ c(0,NA)*x4b + c(0,NA)*x5b + c(0,NA)*x6b

+ x4b ~~ c(0,NA)*x5b + c(0,NA)*x6b

+ x5b ~~ c(0,NA)*x6b #fully saturated

+ '
R> results5 <- cfa(saturated, sample.cov = combined.cov,

+ sample.nobs = combined.n, orthogonal = T)

R> summary(results5, fit.measures = T, standardized = T)

The fit of the model in step 4 should be similar to the fit in step 1 as all degrees of freedom
at the between level are used in a fully saturated model (df = 0). The variance/covariance
estimates at level 2 viewed using the summary() function are similar to the adjusted between
group variance/covariance matrix in x$ab. For step 4, the fit is: χ2(8) = 53.95, RMSEA =
.054, CFI = .996, TLI = .984, SRMR = .020. If the fit is poor in step 4, this should be a signal
that an error was made or that the model fit in step 1 was poor to begin with (Stapleton
2006). If the researcher is interested in modeling a relationship among the level 2 variables,
the hypothesized relationships can be tested in the next step. Note that in Muthen’s (1994)
MCFA steps, the null, independence, and saturated models are not estimated.

Step 5: The hypothesized model

In step 5, the hypothesized level 2 measurement model or theoretical model is finally specified
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Figure 3: Hypothesized multilevel factor model with two factors at level one and one factor
at level two.

and tested (see Figure 3). In this step, the covariance structure specified in step 4 for the
saturated model among all the level 2 variables will be removed and replaced with the hy-
pothesized model with one overall general factor. We hypothesized that the level 2 factors are
correlated with each other as a result of one overall general level 2 factor (i.e., bf1 or between
factor 1) which we define using the following statement: bf1 =~ c(0,1)*x1b + c(0,NA)*x2b

+ c(0,NA)*x3b + c(0,NA)*x4b + c(0,NA)*x5b + c(0,NA)*x6b in the model statement.
Similar to the previous steps, the c(0,1) or c(0,NA) indicates that the factor is not defined
for the first model estimated (as it should not be) or the within group model as indicated by
the 0. The 1 or the NA indicates that the loading is set to 1 (for the first variable) to set the
scale for the factor or NA to indicate that the loading will be freely estimated.

R> level2.1factor <- '
+ f1 = ~x1 + c(a,a)*x2 + c(b,b)*x4

+ f2 = ~x3 + c(c,c)*x5 + c(d,d)*x6

+

+ x1 ~~ c(e,e)*x1

+ x2 ~~ c(f,f)*x2

+ x3 ~~ c(g,g)*x3

+ x4 ~~ c(h,h)*x4

+ x5 ~~ c(i,i)*x5

+ x6 ~~ c(j,j)*x6

+ f1 ~~ c(k,k)*f1

+ f2 ~~ c(l,l)*f2

+ f1 ~~ c(m,m)*f2
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+

+ x1b =~ c(0,3.91)*x1

+ x1b ~~ c(0,NA)*x1b

+ x2b =~ c(0,3.91)*x2

+ x2b ~~ c(0,NA)*x2b

+ x3b =~ c(0,3.91)*x3

+ x3b ~~ c(0,NA)*x3b

+ x4b =~ c(0,3.91)*x4

+ x4b ~~ c(0,NA)*x4b

+ x5b =~ c(0,3.91)*x5

+ x5b ~~ c(0,NA)*x5b

+ x6b =~ c(0,3.91)*x6

+ x6b ~~ c(0,NA)*x6b

+

+ bf1 =~ c(0,1)*x1b + c(0,NA)*x2b + c(0,NA)*x3b + c(0,NA)*x4b +

+ c(0,NA)*x5b + c(0,NA)*x6b

+ bf1 ~~ c(0,NA)*bf1 + c(0,0)*f1 + c(0,0)*f2

+ '
R> results6 <- cfa(level2.1factor, sample.cov = combined.cov,

+ sample.nobs = combined.n, orthogonal = T)

R> summary(results6, fit.measures = T, standardized = T)

In addition to specifying the factor to be estimated at level 2, it is important to also specify bf1

~~ c(0,NA)*bf1 + c(0,0)*f1 + c(0,0)*f2 which indicates that the level 2 factor variance
is estimated at level 2 and that the level 2 factor is not correlated with the two factors (f1
and f2) at level 1. The resulting overall model fit is acceptable, χ2(17) = 142.47, RMSEA =
.062, CFI = .989, TLI = .980, SRMR = .024. For comparative purposes, the same model was
also fit using Mplus resulting in the similar fit statistics, χ2(17) = 140.12, RMSEA = .043,
CFI = .989, TLI = .980, SRMRW = .022, SRMRB = .055 (Mplus calculates SRMR at both
the within and between levels). For the standardized loadings in lavaan, refer to the loadings
under Std.all retrieved using the summary statement. The fit indices and the estimated
factor loadings using both lavaan and Mplus are comparable and are shown in Table 2.

To illustrate how to model more than one factor at the group level, the two factor model at
level 1 is also replicated at level 2 (see Figure 4). To specify a two factor model at level 2, we
indicate in the model:

R> level2.2factors <- '
+ f1 =~ x1 + c(a,a)*x2 + c(b,b)*x4

+ f2 =~ x3 + c(c,c)*x5 + c(d,d)*x6

+

+ x1 ~~ c(e,e)*x1

+ x2 ~~ c(f,f)*x2

+ x3 ~~ c(g,g)*x3

+ x4 ~~ c(h,h)*x4

+ x5 ~~ c(i,i)*x5

+ x6 ~~ c(j,j)*x6

+ f1 ~~ c(k,k)*f1
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+ f2 ~~ c(l,l)*f2

+ f1 ~~ c(m,m)*f2

+

+ x1b =~ c(0,3.91)*x1

+ x1b ~~ c(0,NA)*x1b

+ x2b =~ c(0,3.91)*x2

+ x2b ~~ c(0,NA)*x2b

+ x3b =~ c(0,3.91)*x3

+ x3b ~~ c(0,NA)*x3b

+ x4b =~ c(0,3.91)*x4

+ x4b ~~ c(0,NA)*x4b

+ x5b =~ c(0,3.91)*x5

+ x5b ~~ c(0,NA)*x5b

+ x6b =~ c(0,3.91)*x6

+ x6b ~~ c(0,NA)*x6b

+

+ bf1 =~ c(0,1)*x1b + c(0,NA)*x2b + c(0,NA)*x4b

+ bf2 =~ c(0,1)*x3b + c(0,NA)*x5b + c(0,NA)*x6b #second factor

+ bf1 ~~ c(0,NA)*bf1 + c(0,0)*f1 + c(0,0)*f2 + c(0,NA)*bf2

+ bf2 ~~ c(0,NA)*bf2 + c(0,0)*f1 + c(0,0)*f2

+ '
R> results7 <- cfa(level2.2factors, sample.cov = combined.cov,

+ sample.nobs = combined.n, orthogonal = T)

R> summary(results7, fit.measures = T, standardized = T)

We define the between factors using the corresponding latent variables at level 2 using the
c(0,1)* option (for the first indicator variable) or the c(0,NA)* option. In addition, two
additional lines of code are needed to estimate the covariance between the level 2 factors but
also to specify that the two factors are not correlated with any of the other factors:

bf1 ~~ c(0,NA)*bf1 + c(0,0)*f1 + c(0,0)*f2 + c(0,NA)*bf2;

bf2 ~~ c(0,NA)*bf2 + c(0,0)*f1 + c(0,0)*f2

The resulting model also had a good fit, χ2(16) = 85.67, RMSEA = .047, CFI = .994, TLI =
.988, SRMR = .021. Again, for comparative purposes, the same model was also fit using Mplus
resulting in similar fit statistics, χ2(16) = 86.93, RMSEA = .034, CFI = .994, TLI = .988,
SRMRW = .020, SRMRB = .026. However, given that we would prefer a more parsimonious
model, that prior studies have suggested one overall factor at level 2, and the presence of a
very high correlations of the between level factors indicating that the between level factors
are almost identical (r = .88), our preference is for the simpler one-factor model at level 2.

2.2. Estimating reliability

After completing a CFA, researchers then explore scale reliability of the formed factor. Given
the clustered nature of the data analyzed, reliabilities may also differ depending on the level of
interest. Cronbach’s alpha (1951) is a commonly used measure to estimate reliability, though
not without its limitations (Streiner 2003). However, reliability measures estimated using a
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Figure 4: Multilevel factor model with two factors at levels one and two.

Two Factors Within,
One Factor Between

Two Factors Within,
Two Factors Between

Within Between Within Between
Variable F1 F2 F1 F1 F2 F1 F2

lavaan
x1 0.88 0.99 0.88 0.99
x2 0.87 0.99 0.87 0.99
x3 0.63 0.91 0.63 0.94
x4 0.45 0.87 0.45 0.87
x5 0.82 0.90 0.82 0.94
x6 0.87 0.99 0.87 0.99
Cor(F1,F2) 0.63 0.65 0.88

Mplus
x1 0.88 0.99 0.88 1.00
x2 0.87 0.99 0.87 0.99
x3 0.63 0.90 0.63 0.93
x4 0.45 0.91 0.45 0.91
x5 0.82 0.90 0.82 0.94
x6 0.87 0.99 0.87 0.99
Cor(F1,F2) 0.63 0.65 0.88

Table 2: Comparison of standardized factor loadings (n = 3,894) using lavaan and Mplus.



16 MCFA Using R

total covariance matrix will not reflect a scale’s actual reliability not unless reliability is the
same at each level (Geldhof, Preacher, and Zyphur 2014).

Based on Cronbach’s (1951) equation 16, alpha is a function of the covariances (σ2ij), total

variance (Vt), and the number of items in the scale (n) such that α =
n2σ2

ij

Vt
. The numerator

is the product of the square of the number of items in the scale and the average of the
unique covariance elements. The denominator is merely the sum of all the elements within
the covariance matrix or summing together all the variances and two times the covariance
elements. Extending alpha to a multilevel framework is straightforward and requires the use
of the variance/covariance matrix estimated in a saturated model (i.e., step 4) or using the
adjusted between level covariance matrix (i.e., alpha(x$ab.cov)).

Included as well in the syntax provided is an alpha() function which requires a covariance
matrix as its input. To estimate multilevel alpha for the one factor model at level two, specify
alpha(x$ab.cov) using the adjusted between group covariance matrix which results in an
alpha of .97. In comparison, using the pooled within covariance matrix, alpha(x$pw.cov),
results in a level one alpha of .82 (note though the one factor model at level one did not fit
well, this is shown for comparative purposes). Generally, higher level scales are often more
reliable as a result of coming from multiple raters (Byrne 2012). Other multilevel reliability
measures are available such as multilevel composite reliability ω (see Geldhof et al. 2014, for
a comparison of features).

3. Conclusion

Although the importance of performing MCFA with clustered data has been discussed (Julian
2001; Muthen and Satorra 1995; Schweig 2013), the steps on how to perform the analyses have
not been illustrated using R together with the lavaan package. We provide a function (i.e.,
mcfa.input) wherein all the necessary covariance matrices, the scaling factor, the sample size
at both levels, and the ICCs are automatically computed from the raw data.

The manual modeling using the multigroup setup is unconventional though is required to
properly estimate the hypothesized level 2 model. In addition, several instances require
users to override the default options in lavaan. In this paper, we illustrate step-by-step
how to conduct the analyses using the MCFA procedures outlined by Hox (2002) and others
(Stapleton 2006) but within the R environment. Finally, we also show how to compute
multilevel alpha as an estimate of scale reliability at the group level.

The assumption that the factor structures using nested data cannot be assumed: at times
the factor structures may be the same at both levels (Konold et al. 2014), higher level factor
structures may be simpler (Huang and Cornell 2015b), or the higher level factor structures
may be totally different (Schweig 2013). In any case, using a MCFA, especially when the
higher level factor structures are of interest goes beyond properly estimating standard errors
or adjusting model fit indices but requires investigating the similarities or differences in factor
structures at both levels simultaneously.
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